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produced in e+e− annihilation can be treated as a shock wave propagating in AdS space

leaving spherical energy and charge distributions on the boundary. This is shown to be

mathematically identical to the computation of energy and charge distributions in the

transverse plane generated by a high energy color singlet state. At weak coupling, the

correspondence is useful in studying interjet observables. By performing the stereographic

projection to the BFKL equation, we construct an exact solution to the evolution equation

derived by Marchesini and Mueller, and find the angular distribution of small–x gluons

in the interjet region. Finally we argue that the correspondence holds also for the energy

correlation functions.
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1. Introduction

In recent years evidence has been accumulating that the BFKL dynamics [1] is relevant to

certain observables in e+e− annihilation [2 – 7]. This is a rather unexpected development

since, as is well-known [8], the dominant contribution to the total multiplicity in e+e−

annihilation comes from narrow jets whose structure is described by the double logarithmic

(soft and collinear) resummation, whereas the BFKL Pomeron has solely to do with the

soft radiation. However, if one turns to regions away from jets, gluons are not sensitive to

the collinear singularity as they are necessarily emitted at large angle. The resummation

of the remaining soft logarithms then leads to evolution equations very similar to the ones

derived in the context of BFKL and saturation physics. In particular, the interjet soft gluon

multiplicity to leading order in Nc grows exactly like the BFKL Pomeron, suggesting the

possible existence of a deep correspondence between the timelike and spacelike processes.

Still, conceptual as well as technical differences persist, and it remains unclear whether this

similarity could be elevated to something more fundamental.

Meanwhile, a surge of interest in the Pomeron [9 – 15, 18, 19, 16, 17, 20] and e+e−

annihilation [21 – 24] in strongly coupled N = 4 supersymmetric Yang-Mills (SYM) theory

based on the AdS/CFT duality [25, 26] has provided new perspectives on the corresponding

QCD problems. We now know that jets exist only in weakly coupled theories. This in

turn suggests that the importance of the soft, non-collinear radiation in e+e− annihilation

becomes more pronounced as the coupling gets stronger. In the limit of infinite ’t Hooft

coupling λ → ∞, there are no jets, and therefore in a sense the entire solid angle would

look like an interjet region. In such a situation one would naively expect that the total

multiplicity could be dictated by the Pomeron. Interestingly, the existing results already
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hint at this possibility. The AdS/CFT prediction of the multiplicity in e+e− annihilation

is [22, 23]

n(Q) ∝ Q1−3/2
√

λ , (1.1)

where Q is the virtual photon energy. On the other hand, the Pomeron intercept is [10, 11]

JPom − 1 = 1 − 2√
λ
. (1.2)

One sees that in the strong coupling limit1 it may be possible to interpret the linear

dependence n(Q) ∝ Q as arising from the Pomeron (or rather, the graviton) n(Q) ∝
QJPom−1.

In this paper we explore further connections of this kind, between the final state in

e+e− annihilation and the small–x wavefunction of a color singlet state (‘hadron’) both at

weak (BFKL Pomeron) and strong (graviton) coupling. At strong coupling, gravity in the

AdS5 space determines the energy distribution of a high energy hadron in the transverse

plane, i.e., the plane perpendicular to the direction of motion [27]. On the other hand,

the angular distribution of energy in e+e− annihilation is spherical [21]. We show in

section 2 that these results are just two sides of the same coin-mathematically identical,

but worked out in different coordinate systems. Section 3 deals with the weak coupling

case. The BFKL equation, once reformulated in the dipole language [28], predicts not only

the number of small–x gluons, but also their distribution and correlation in the transverse

plane. It turns out that they can be exactly mapped onto the angular distribution of

soft gluons in the interjet region in e+e− annihilation. The key element that realizes this

mapping-the stereographic projection-has been inspired by the coordinate transformation

in AdS5 just mentioned above. Finally, in section 4 we argue that the correspondence holds

also for the energy-energy correlation functions.

2. Energy and charge distribution at strong coupling

In this section we compute the energy and charge distributions on a sphere for e+e−

annihilation and in the transverse plane for a high energy hadron at strong coupling in

such a way that the symmetry between the two computations are manifest.

2.1 Metric conventions

The AdS5 space in the global coordinates is a hypersurface parameterized by the equation

W 2
−1 +W 2

0 −W 2
1 −W 2

2 −W 2
3 −W 2

4 = R2 . (2.1)

We set the AdS radius R = 1 henceforth and introduce two Poincaré coordinate systems:

1It is conceivable that the remnant of jets at finite ’t Hooft coupling accounts for the small discrepancy

of order 1/
√

λ in the exponent between the total and ‘interjet’ multiplicities.
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Poincaré 1.

W−1 +W4 =
1

z
, Wµ =

xµ

z
. (µ = 0, 1, 2, 3) (2.2)

The proper length is given by

ds2 =
dz2 − 2dx+dx− + d~x2

T

z2
. (2.3)

where x± = (x0 ± x3)/
√

2 and ~xT = (x1, x2). This is the natural coordinate system to

describe high energy reactions involving hadrons moving in the x3-direction in the initial

state.

Poincaré 2.

W0 +W3 =
1

y5
=

−1√
2y+z

, W−1 = −y
0

y5
, W4 = −y

3

y5
, W1,2 =

y1,2

y5
, (2.4)

ds2 =
dy2

5 − 2dy+dy− + d~y2
T

y2
5

, (2.5)

with y± = (y0 ± y3)/
√

2 and ~yT = (y1, y2). This coordinate system was previously in-

troduced in [15] in the context of high energy scattering. As demonstrated in [21], it is

particularly convenient for the discussion of the final state in e+e− annihilation.2

The following relations hold on the boundary of AdS5, at y5 = 0 or z = 0

y+ = − 1

2x+
, y− = x− − x2

1 + x2
2

2x+
, ~yT =

~xT√
2x+

. (2.6)

The four-dimensional proper length is

ds24 = −2dx+dx− + d~x2
T =

−2dy+dy− + d~y2
T

2(y+)2
. (2.7)

2.2 A shock wave picture of e+e− annihilation

Consider a static timelike photon with momenta qµ = (Q, 0, 0, 0) created at xµ = 0 via

an e+e− annihilation. In the gravity dual description, the subsequent evolution can be

pictured as a Kaluza-Klein photon falling down into the AdS5 bulk and reaching the center

z = ∞ at future infinity x+ = ∞. (See figure 1 and refs. [21, 22].) The center of AdS5

is the hyperbolic space H3 parameterized by W 2
0 −W 2

1 −W 2
2 −W 2

3 = 1. At x+ = ∞, or

y+ = 0, the photon hits the point W0 = 1, W1 = W2 = W3 = 0, or in the Poincaré 2

coordinates, y5 = 1 and y1 = y2 = 0 [21]. Measurements of the final state are done on

the boundary (y5 = 0) of the H3 space which is a sphere parameterized by the solid angle

Ω = (θ, φ). This is related to ~yT via the stereographic projection

y1 =
W1

W0 +W3
≈ sin θ cosφ

1 + cos θ
, y2 =

W2

W0 +W3
≈ sin θ sinφ

1 + cos θ
, (2.8)
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Figure 1: A schematic picture of e+e− annihilation at strong coupling.

and

(dy1)2 + (dy2)2 =
1

(1 + cos θ)2
dΩ2 . (2.9)

For the measurement of total energy flowing into a specified region of the solid angle,

the relevant operator is [29, 30]

E(Ω) ≡ lim
r→∞

r2
∫ ∞

0
dx0 niT

0i(x0, r~n) , (2.10)

where ~n = (sin θ cosφ, sin θ sinφ, cos θ) is a unit vector and r2 ≡ x2
1 + x2

2 + x2
3. As observed

in [21], this operator takes a particularly simple form in the y coordinates when restricted

to y+ = 0 (or x+ = ∞). Indeed, from (2.7) and (2.8) it follows that

r2 =
1

2(y+)2(1 + cos θ)2
, dx0 =

1 + cos θ√
2

dy− , (2.11)

and3

niT
0i(x) =

4(y+)2T−−(y)

(1 + cos θ)2
, (2.12)

so that

E(Ω) =

√
2

(1 + cos θ)3

∫

dy−T−−(y+ = 0, y−, ~yT ) ≡ 1

(1 + cos θ)3
E(~yT ) . (2.13)

2Our convention differs from [21] by factors of
√

2.
3Note that the conformal transformation xµ → yµ involves a Weyl rescaling of Tµν by a factor 2(y+)2

as can be seen from (2.7). The same applies to the charge operator jµ below.
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The factor 1/(1 + cos θ)3 indicates that E has dimension three under the transforma-

tion (2.8).

Similarly, if the initial state is charged with respect to a U(1) subgroup of some global

symmetry group (such as the R-symmetry), one can measure the total charge flowing in

the direction ~n by the operator

Q(Ω) ≡ lim
r→∞

r2
∫ ∞

0
dx0 nij

i(x0, r~n) , (2.14)

which in the y coordinates reads

Q(~yT ) ≡
∫ ∞

−∞
dy−j−(y+ = 0, y−, ~yT ) = (1 + cos θ)2Q(Ω) . (2.15)

In the Poincaré 2 coordinates, one can imagine that the photon passes through the

H3 space at y+ = 0 and continues to propagate for y+ > 0. Since the operators (2.13)

and (2.15) are localized at y+ = 0, they carry large p−. Consequently, they are sensitive

only to the plus component of the original photon momentum q+ = Q/
√

2.4 Therefore, for

the purpose of measuring energy and charge at future infinity, one may treat the photon

as a shock wave in the y-coordinate with the following energy momentum tensor

T−− = q+δ(y5 − 1)δ(2)(~yT )δ(y−) . (2.16)

Plugging (2.16) into the source term of the Einstein equation, one finds the metric [12, 14]

ds2 =
dy2

5 − 2dy+dy− + d~y2
T + f(y5, ~yT )δ(y−)(dy+)2

y2
5

, (2.17)

where

f(y5, ~yT ) =
κ2q+

4π
y5

(

1 + u−
√

u(2 + u)
)2

√

u(2 + u)
. (2.18)

In the above, κ2 is the five-dimensional gravitational constant and u is the chordal distance

in H3 measured from the shock wave at (~yT , y
5) = (~0, 1)

u =
(~yT )2 + (y5 − 1)2

2y5
. (2.19)

The energy momentum at the boundary is given by the well-known procedure

〈T−−(y−, ~yT )〉 = lim
y5→0

2

κ2y4
5

f(y5, ~yT )δ(y−) =
2q+

π(1 + (~yT )2)3
δ(y−) =

1

2
T00(y

−, ~yT ) , (2.20)

and therefore,

〈E(~yT )〉 =
√

2

∫ ∞

−∞
dy−〈T−−(y+ = 0, y−, ~yT )〉 =

2Q

π(1 + (~yT )2)3
. (2.21)

4It may seem one is confusing momenta in the x− and y− directions. But it turns out that they are the

same, see [21].
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Using (2.13), one finds the expected result

〈E(Ω)〉 =
Q

4π
, (2.22)

namely, the distribution of energy is spherical. In [21] this result was derived in a different

way, by evaluating the three-point function 〈O†(q)E(Ω)O(q)〉.
Similarly, one can compute the charge distribution. Let us introduce a charge current

associated with the shock wave

j+ = δ(y5 − 1)δ(2)(~yT )δ(y−) , (2.23)

and solve the Maxwell equation in the presence of this current.

1

g2
YM

DMF
M+ =

1

g2
YM

1√
−G∂M

(√
−GFM+

)

= −j+ . (2.24)

Explicitly,

1√
−G∂M

(√
−GFM+

)

= −y2
5

(

y2
5∂

2
i + y2

5∂
2
y5

− y5∂y5

)

A−

= −y2
5�H3A− = −g2

YMj
+ , (2.25)

where �H3 is the scalar Laplacian on H3. This can be solved using Green’s function [31]

A− = −A
+

y2
5

= g2
YMδ(y

−)

∫

d3y′
√

−G′
H3
G(y, y′)

δ(y′5 − 1)δ(2)(~yT )

y′25

= δ(y−)
g2
YM

2π

−1

(2u)2
2F1

(

2,
3

2
, 3;−2

u

)

. (2.26)

Near the boundary y5 → 0,

A+ ≈ δ(y−)
g2
YM

2π

y4
5

(1 + ( ~yT )2)2
. (2.27)

The boundary expectation value of the current is computed in the usual way [26]

〈j+(y−, ~yT )〉 =
δS

δA− = − 1

4g2
YM

(

−4
√
−GF y5+

)

y5=0
= δ(y−)

1

π

1

(1 + ( ~yT
2))2

. (2.28)

The integrated transverse charge distribution is

〈Q(~yT )〉 =

∫

dy−〈j+〉 =
1

π

1

(1 + ( ~yT
2))2

. (2.29)

Using (2.15), one finds that the distribution of charge is also spherical

〈Q(Ω)〉 =
1

4π
. (2.30)

Therefore, although somewhat counterintuitive, it is possible to describe a static pho-

ton as a shock wave in this particular coordinate system. This paves a way to establish a

close correspondence between the process studied and the usual shock wave picture of high

energy scattering.
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2.3 A shock wave picture of a high energy hadron

Consider a state with large momentum p+ = (p0 + p3)/
√

2 =
√

2E in the x3 direction

created by a gauge invariant operator in N = 4 SYM at strong coupling. If this state

(‘hadron’) has a characteristic transverse scale L, the wavefunction in the z-direction Φ(z)

that solves the equation of motion in AdS5 would be localized at around z ∼ L. At high

energy, this portion of the wavefunction can be represented by a shock wave in the Poincaré

1 coordinates

T++ =
zp+

√
−G√−g00

δ(z − L)δ(2)(~xT )δ(x−) = z7p+δ(z − L)δ(2)(~xT )δ(x−) , (2.31)

where zp+ is the energy in local inertial coordinates. It is understood that outcomes

of this approximation are to be convoluted with the weight |Φ(L)|2 in order to obtain

physical amplitudes. (2.31) is identical to (2.16) after relabeling y → x, y5 → z, or in other

words, going from Poincaré 2 to Poincaré 1. Moreover, the analog of the condition y+ = 0

in the e+e− case naturally emerges here due to the Lorentz time dilation. Because the

wavefunction of a hadron does not depend on x+, without loss of generality one can decide

to work in the H3 space W 2
−1−W 2

1 −W 2
2 −W 2

4 = 1 located at x+ = 0. The boundary of this

H3 space at z = 0 can be identified with the transverse (or the impact parameter) plane

R
2, ~xT = (x1, x2) in the physical Minkowski space, see figure (2). It is now obvious that

the calculation of energy and charge distributions [The former was initially done in [27]

which we reproduce below.] is mathematically identical to the one given in the previous

subsection.5

(2.31) modifies the metric as

ds2 =
dz2 − 2dx+dx− + d~x2

T + f(z, ~xT )δ(x−)(dx+)2

z2
, (2.32)

where

f(z, ~xT ) =
κ2p+

4π
zL

(

1 + u−
√

u(2 + u)
)2

√

u(2 + u)
, (2.33)

and

u =
(~xT )2 + (z − L)2

2zL
. (2.34)

At high energy the dominant component of the energy momentum tensor on the boundary

is T++ = T−− = 2T 00, and one is typically interested in the transverse energy distribution

E(~xT ) =
1√
2

∫ ∞

−∞
dx−T−−(x+ = 0, x−, ~xT ) . (2.35)

5The only modifications are the replacement 1 → L and the factors of
√

2 in the energy-momentum

tensor arising from the different initial four-momenta, namely, qµ = (Q, 0, 0, 0) vs. pµ = (E, 0, 0, E).
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Figure 2: A shock wave picture of a high energy hadron propagating in the x+ direction.

This is identical in structure to the corresponding operator (2.13) in the timelike problem.

Its expectation value is given by

〈T−−(x−, ~xT )〉 = lim
z→0

2

κ2z4
f(z, ~xT )δ(x−) =

2p+L4

π(L2 + (~xT )2)3
δ(x−) , (2.36)

and therefore,

〈E(~xT )〉 =
1√
2

∫ ∞

−∞
dx−〈T−−(x+ = 0, x−, ~xT )〉 =

2EL4

π(L2 + (~xT )2)3
. (2.37)

The total energy is
∫

d2~xT 〈E(~xT )〉 = E , (2.38)

as it should.

Incidentally, consider also the Fourier transform

〈E(~qT )〉 =

∫

d2~xT e
i~qT ·~xT 〈E(~xT )〉 =

EL2

2
q2TK2(qTL) . (2.39)

This is the ‘gravitational form factor’ of our pointlike probe localized at z = L [32, 33].

The form factor of realistic hadrons can be obtained by convoluting (2.39) with a suitable

wavefunction. Then the exponential behavior ∼ e−qT L at large qT will be replaced by the

usual power-law falloff.

Similarly, starting from the charge current associated with the shock wave

j+ =
1√
−Gδ(z − L)δ(2)(~xT )δ(x−) = z5δ(z − L)δ(2)(~xT )δ(x−) , (2.40)

– 8 –
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one finds the transverse charge distribution

〈Q(~xT )〉 =

∫

dx−〈j+〉 =
1

π

L2

(L2 + ( ~xT
2))2

, (2.41)

which is correctly normalized

∫

d2~xT 〈Q(~xT )〉 = 1 . (2.42)

Its Fourier transform is

〈Q(~qT )〉 =

∫

d2~xT e
i~qT ·~xT 〈Q(~xT )〉 = qTLK1(qTL) . (2.43)

This is the ‘electromagnetic form factor’ of our probe. See [34, 35] for more discussions.

To sum up, we have shown that there is an exact mapping between seemingly different

physical problems at strong coupling: the final state in e+e− annihilation and the transverse

profile of a colorless state at high energy. Since the relevant operators are identical up to

the relabeling x↔ y of their arguments, the correspondence holds also for the correlation

functions of these operators, including stringy corrections (finite-λ effects). We will discuss

this issue later, but before doing so let us turn to the weak coupling case and see if there

is a similar correspondence between the two processes.

3. Interjet soft gluon multiplicity at weak coupling

As explained in Introduction, at weak coupling the only place one may hope to look for

Pomeron-like dynamics in e+e− annihilation is the interjet (away-from-jet) region where

only the soft logarithms are relevant. In this section we shall investigate only the multi-

plicity and distribution of soft gluons, though our discussion is general and likely to be

applicable to other non-global observables. It is convenient to work in the large Nc ap-

proximation6 and use the color dipole approach [36, 28]. In this picture, the emission of

a soft gluon with momentum k from the primary quark and antiquark with momenta pa

and pb, respectively, can be viewed as a splitting of one dipole into two child dipoles. The

differential probability for this splitting is given by

dP = ᾱsωdω
dΩk

4π

pa · pb

(pa · k)(k · pb)
≈ ᾱs

dω

ω

dΩk

4π

1 − cos θab

(1 − cos θak)(1 − cos θbk)
, (3.1)

where ᾱs = Ncαs/π, ω = k0 is the energy of the soft gluon and θak is the angle between

the quark and gluon directions, etc.

As the invariant mass Q is increased, the initial qq̄ pair undergoes many splittings

and produces a lot of dipoles (gluons) with a small fraction of energy ω/Q ≪ 1. Defining

n(θab, θcd, Y ) as the number density of dipoles with opening angle θcd inside the parent

6This is of course implicit in the AdS/CFT-based calculations in the previous section.
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dipole with opening angle θab within the rapidity interval Y = lnQ/ω, ref. [4] derived the

following evolution equation7

∂Y n(θab, θcd, Y ) =ᾱs

∫

d2Ωk

4π

1 − cos θab

(1 − cos θak)(1 − cos θbk)

×
(

n(θak, θcd, Y ) + n(θbk, θcd, Y ) − n(θab, θcd, Y )
)

. (3.2)

Turning now to the spacelike problem, one can contrast (3.2) with the evolution equa-

tion for the dipole density n(xab, xcd) in the transverse plane defined as the total number

of dipoles with size xcd and energy larger than ω inside the parent dipole with size xab and

energy E

∂Y n(xab, xcd, Y ) =ᾱs

∫

d2~xk

2π

(~xab)
2

(~xak)2(~xbk)2

×
(

n(xak, xcd, Y ) + n(xbk, xcd, Y ) − n(xab, xcd, Y )
)

, (3.3)

where Y = lnE/ω.

In [4], it was argued that if one considers e+e− annihilation in a highly boosted frame

such that θab ≪ 1, one can approximate 1 − cos θ ≈ θ2/2 and d2Ω ≈ d2~θ. Then the two

equations (3.2) and (3.3) become formally identical. This means, in particular, that the

leading energy dependence is that of the BFKL Pomeron

n(θab, θcd, Y ) ∼ n(xab, xcd, Y ) ∼ e4ᾱs ln 2 Y . (3.4)

A more detailed analysis of (3.2) without assuming θab to be small has been carried out

in [6]. There the dependence on θcd was suppressed, so the result is inclusive with respect

to the size and location of the child dipoles.

Here we wish to point out that the two equations with the full θcd and xcd dependence,

respectively, can be exactly mapped to each other via the stereographic projection (2.8)

and (2.9), see, figure 3. Indeed, (2.8) implies (renaming y → x and omitting the subscript T )

cos θ =
1 − |~x|2
1 + |~x|2 , sin θ =

2|~x|
1 + |~x|2 , cosφ =

x1

|~x| , sinφ =
x2

|~x| , (3.5)

from which it follows that

1 − cos θab =
2(~xab)

2

(1 + (~xa)2)(1 + (~xb)2)
, (3.6)

and

d2Ωk

4π

1 − cos θab

(1 − cos θak)(1 − cos θbk)
=
d2~xk

2π

(~xab)
2

(~xak)2(~xbk)2
. (3.7)

Moreover, the initial conditions for the two equations are identical, namely, at Y = 0

the parent and the child dipole are on top of one another; θab = θcd and xab = xcd.

7By slight abuse of notation, θab denotes both the coordinates Ωa(b) = (θa(b), φa(b)) of the dipole legs on

a sphere as well as the magnitude of the angle between. Similarly, xab etc. in (3.3) denotes both the two

dimensional vectors ~xa(b) as well as their magnitude |~xa − ~xb|.
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Figure 3: Stereographic map between a sphere of unit diameter and the transverse plane.

Since the exact solution to n(xab, xcd, Y ) is known [37, 38], all one needs to do is to make

the coordinate transformation (3.6) to obtain the exact solution n(θab, θcd, Y ). This task

becomes very straightforward once one notices that, thanks to conformal symmetry of the

BFKL equation, the solution depends only on the anharmonic ratio which takes a simple

form in each coordinate system

|ρ|2 =
x2

abx
2
cd

x2
acx

2
bd

=
(1 − cos θab)(1 − cos θcd)

(1 − cos θac)(1 − cos θbd)
. (3.8)

Instead of writing down the exact solution for generic values of |ρ| and Y , which is

possible but complicated, let us focus on the most interesting case of back-to-back jets

θab = π and count the number of dipoles with θcd ≪ 1 in the interjet region θac ≈ π−θbd ∼
O(1). Then

|ρ| ≈ θcd

sin θac
≪ 1 . (3.9)

After the stereographic projection, this is equivalent to the number of small dipoles xcd ≪
xab near the center of the parent ~xa+~xb

2 . The asymptotic behavior at large Y is8

x4
cdn(xab, xcd, Y ) ∼ θ4

cdn(θab, θcd, Y ) ∼ |ρ|
(DᾱsY )3/2

ln

(

16

|ρ|

)

e4 ln 2ᾱsY e−
2 ln2(|ρ|/16)

DᾱsY , (3.10)

8Our normalization of n(xcd) differs from the more common one in the literature by a factor 1/x2
cd. The

current normalization directly gives the total number of dipoles upon integration with the measure
R

d2~xcd

rather than
R

d2~xcd/x2
cd.
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with D = 28ζ(3). The most salient feature of (3.10) is the nontrivial angular distribution

of dipoles/gluons in the interjet region

n(θab, θcd, Y ) ∝ 1

sin θac
, (3.11)

which cannot be obtained in the small angle approximation θab ≪ 1, sin θac ≈ θac. (3.11) is

perfectly in line with one’s physical intuition that the multiplicity distribution has peaks

in the directions of the back-to-back jets θac ≈ 0 and θac ≈ π. On the other hand, to

obtain the total multiplicity within jets one has to analyze (3.2) taking into account double

logarithmic contributions [39].

4. Correlation functions

So far we have been focusing on the timelike-spacelike correspondence of energy, charge

and number distributions. In this last section we briefly discuss how the correspondence

works at the level of higher-point functions of these operators.

At strong coupling, ref. [21] has given a prescription to compute correlation functions

of the energy operator (2.13)

〈E(Ω)E(Ω′) · · · 〉 , (4.1)

beyond the supergravity approximation. Up to the coordinate transformation (2.8) and

the rescaling (2.13), they give correlation functions of E(~y)’s on the y-plane

〈E(~ya)E(~yb) · · · 〉 . (4.2)

From our point of view the only difference between the timelike and spacelike problems is

just the relabeling x ↔ y. Thus one can immediately get from (4.2) correlation functions

of the energy operator (2.37) in the transverse plane.

〈E(~xa)E(~xb) · · · 〉 = 〈E(~ya)E(~yb) · · · 〉|~y→~x , (4.3)

measured in the presence of a high energy hadron. In particular, the complete absence of

correlation in the λ→ ∞ limit [21]

〈
∏

i

E(~xi)〉 =
∏

i

〈E(~xi)〉 , (4.4)

should still be valid here. Another interesting result is the behavior in small angle limit

〈E(Ωa)E(Ωb)〉 ∼
1

|θab|2+2γ(3)
, (θab → 0) (4.5)

where γ(j) is the (spacelike) anomalous dimension. In the hadron problem, this should

translate into

〈E(~xa)E(~xb)〉 ∼
1

|~xa − ~xb|2+2γ(3)
. (4.6)
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Since (4.5) is an exact field theoretic result, it is valid in N = 4 SYM for any value of

the coupling. At strong coupling, the anomalous dimension is large and negative, γ(3) ≈
−λ1/4/

√
2, so the correlation vanishes as Ωb → Ωa or ~xb → ~xa. In view of the result in

section 3, one can expect (4.5) and (4.6) to be valid also in QCD to the extent that the

running of the coupling can be neglected (as in the leading order BFKL approximation).

To see this is indeed the case, return to (3.2) and express the solution in the inverse Mellin

representation keeping θcd ≪ 1

n(θab, θcd, Y ) ∼ 1

θ2
cd

∫

dγ

2πi
e(j(γ)−1)Y

(

1

θcd

)2γ

=
1

θ2
cd

∫

dj

2πi
c(j)

(

1

x

)j−1 (

1

θcd

)2γ(j)

,

(4.7)

where

j(γ) − 1 = ᾱs (2ψ(1) − ψ(γ) − ψ(1 − γ)) , (4.8)

c(j) is the Jacobian and x = e−Y is the usual small–x variable (not to be confused with

transverse coordinates such as xa.). In order to relate (4.8) to the energy two-point function

with opening angle θcd, one multiplies by x and integrates over x9

∫ 1

0
dxxn(θab, θcd, x) ∼

1

θ2
cd

∫

dj

∫ 1

0
dxx2−j

(

1

θcd

)2γ(j)

∼ 1

θ2
cd

∫

dj
1

j − 3

(

1

θcd

)2γ(j)

∼ 1

θ
2+2γ(3)
cd

. (4.9)

This has the same singularity structure as (4.5). In the BFKL approximation, γ(3) is

obtained by solving (4.8) with j = 3 in the branch 0 < γ < 1/2. (4.9) suggests that the

opening angle θcd of child dipoles in the energy-weighted distribution can be reinterpreted

as the separation angle in the energy-energy correlation function at least when θcd is small.

Similarly, in the hadron problem at weak coupling one finds, as xcd → 0,

∫ 1

0
dxxn(xab, xcd, x) ∼

1

x
2+2γ(3)
cd

, (4.10)

in agreement with (4.6).

5. Conclusions

We have pointed out a novel correspondence between the interjet region in e+e− annihila-

tion and the transverse plane of a high energy hadron both at weak and strong coupling.

At strong coupling, due to the absence of jets the mapping extends to the entire region

S2 ↔ R
2 where particles are distributed. The fact that the same stereographic projection

works both at weak and strong coupling suggests that the timelike-spacelike duality in the

9Note that n(x) is the total number of dipoles with energy fraction larger than x. Therefore, one

x-integration is already implied in its definition.
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soft sector has a deep geometric origin which persists beyond the perturbative framework.

We have demonstrated the usefulness of this mapping for the single dipole distribution.

Recently there has been some progress in the analytical and numerical study of multiple

dipole correlation functions [40 – 42]. The corresponding correlation of dipoles in e+e−

annihilation will be studied elsewhere.
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